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One-dimensional nonequilibrium kinetic Ising models with local spin symmetry breaking:
N-component branching annihilating random-walk transition at zero branching rate
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The effects of locally broken spin symmetry are investigated in one-dimensional nonequilibrium kinetic
Ising systems via computer simulations and cluster-mean-field calculations. Besides a line of directed perco-
lation transitions, a line of transitions belonging toN-component, two-offspring branching annihilating
random-walk class (N-BARW2) is revealed in the phase diagram at zero branching rate. In this way a spin
model forN-BARW2 transitions is proposed.
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I. INTRODUCTION

The Ising model is a well-known static equilibrium
model. Its dynamical generalizations, the kinetic Ising mo
els, were originally intended to study relaxational proces
near equilibrium states@1,2#. Glauber introduced the singl
spin-flip kinetic Ising model, while Kawasaki constructed
spin-exchange version for studying the case of conser
magnetization. Nonequilibrium kinetic Ising models,
which the steady state is produced by kinetic processe
connection with heat baths at different temperatures, h
been widely investigated and results have shown that var
phase transitions are possible under nonequilibrium co
tions, even in one dimension~1D! ~for a review see the ar
ticle by Rácz in Ref. @3#!. Most of these studies, howeve
have been concerned with the effects the nonequilibrium
ture of the dynamics might exert on phase transitionsdriven
by temperature.

A different line of investigating nonequilibrium phas
transitions has been via branching annihilating random w
~BARW! processes. The parity conservation of particles
decisive in determining the universality class of the ph
transition. A coherent picture of this scenario is provid
from a renormalization point of view in Ref.@4#. The first
example of a BARW model with an even number of o
springs exhibiting the so-called PC~parity conserving! tran-
sition was reported by Grassbergeret al. @5#.

A class of general nonequilibrium kinetic Ising mode
~NEKIM ! with combined spin-flip dynamics atT50 and
Kawasaki spin-exchange dynamics atT5` has been pro-
posed by one of the authors@6# in which, for a range of
parameters of the model, PC-type transition takes place.
model has turned out to be very rich in several respects,
a review see Ref.@7#.

Absorbing transitions have been, however, mostly stud
in particle-type models. TheN-BARW2 model is a classica
stochastic system ofN types of particles with branching an
nihilating random walk and two offsprings. ForN51 the
model exhibits, at finite branching ratep, PC-type transition
@8–14#. ForN.1, N types of particlesAi perform diffusion,
1063-651X/2002/66~1!/016127~6!/$20.00 66 0161
-
s

d

in
ve
us
i-

a-

lk
s
e

is
or

d

pairwise annihilation of the same species and branchingAi
→Ai12Aj with ratep for i 5 j and with ratep/(N21) for
i 5” j . In case ofp50 this model is always active except fo
the annihilation fixed point at zero branching rate. Accordi
to field theory@4# the coarse-grained, bosonic version of t
model forms a different universality class, the so-call
N-BARW2 with exponents in one dimension as follow
n'51, z52, a51/2, b51. Here the exponents ar
defined as follows:

j;p2n',t;jz, ~1!

r~ t !;t2a,r`;pb, ~2!

wheret is the characteristic time,j is the correlation length,
andr(t), r` are the particle densities at timet and in the
steady state, respectively.

Hard core interactions have proven to be relevant in c
of the N-BARW2 model by drastically changing the unive
sality class@17,18#. The arrangement of the offsprings rel
tive to the parent turns out to be a relevant factor and cau
two robust classes that are insensitive to the parity conse
tion @19# or to the binary nature of the production proce
@20#.

In this paper, we present an asymmetric spin mod
NEKIMA, with asymmetry both in the annihilation and spin
flip rate as a generalization of NEKIM. On the level of kink
however, this model corresponds to a process ofA and B
particles withA→ABA- and B→BAB-type branching and
AB→0 annihilation andBA→BA exclusion. Nevertheless
as will be presented below using computer simulations,
critical properties near the zero branching limit are the sa
as for theN-BARW2 model cited above with no sign o
exclusion effects since alternating sequences ofA’s andB’s
occur like in Ref.@21#, hence hard core interactions cann
play an important role. Moreover, at finite branching rate
the kinks a line of directed percolation~DP! -type transition
@15# occurs, which is well described byN56 level cluster-
mean-field calculations.
©2002 The American Physical Society27-1
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II. THE MODEL

The general form of the Glauber spin-flip transition rate
one dimension for spinsi sitting at sitei is @1# (si561):

w~si ,si 21 ,si 11!5
G

2
~11dsi 21si 11!

3F12
1

2
si~si 211si 11!G ~3!

at zero temperature. Usually the Glauber model is und
stood as the special cased50, G51.

The Kawasaki spin-exchange transition rate of neighb
ing spins @2# at T5` reduces to an unconditional neare
neighbor exchange:

wex~si ,si 11!5
pex

2
~12sisi 11!, ~4!

wherepex is the probability of spin exchange. The quantiti
in Eqs.~3! and~4! conserve spin symmetry, of course. Co
cerning spin exchanges, which act only at domain bou
aries, the process of main importance here is that a kink
produce two offsprings at the next time step with probabi

pk→3k}pex . ~5!

By changingpex for negative values ofd this model displays
phase transitions in the parity conserving universality cl
@6#.

In the following, we will be interested in investigating a
extended version of the above model. Instead of Eq.~3! we
will prescribe the rates for the caseG51, d50 as follows.
The 111→111 and 222→222 processes remain
as in Eq.~3! i.e., at zero temperature no kink-pair creatio
occur inside of domains. Further rates will be chosen in s
a way that they break the symmetry of1 and 2 spins lo-
cally. Such dynamically self-induced field was first inves
gated in a different context by Majumdar, Dean, and Gra
berger~MDG! @16#, namely, in studying theT50 coarsening
dynamics of an Ising chain in a local field, which favors2
spins as compared to1 ones dynamically.

In addition to the choice in Ref.@16# concerning the
asymmetry in the annihilation rate

w~1;22 !51, ~6!

w~2;11 !50, ~7!

further spin symmetry breaking will be introduced he
namely, in the spin-flip part of the Glauber transition rate
strength of which will be measured by a further parame
p1 . While the transition rate

w~2;12 !5w~2;21 !51/2 ~8!

is unchanged, the two rates flipping1 spins will be reduced
as

w~1;12 !5w~1;21 !5p1,1/2 ~9!
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in order to balance the effect of the other dynamically
duced field arising from Eqs.~6! and~7! by locally favoring
1 spins. The spin-exchange part of the model remains a
the spin-symmetric case~4!.

In the terminology of domain walls or particles, the fo
lowing reaction-diffusion picture arises. There are two kin
of domain walls:21[A and12[B, which can only oc-
cur alternately because of the spin background. Upon m
ing AB→0 while in the opposite sequenceBA, the two do-
main walls are repulsive due to Eq.~7!.

The absorbing states in the extreme situationp150 when
spin flipping maximally favors1 spins, are states with
single frozen2 spins such as121112112111.
By increasingp1 , a slow random walk of these lonely2
spins starts and by annihilating random walk only one
them survives and performs RW. The all1 and all2 states
are, of course, also absorbing.

The inclusion of nearest neighbor spin exchange~4!
changes the picture drastically. Spin exchange leads tA
→ABA- andB→BAB-type kink production, which togethe
with AB→0 annihilation @BA→0 is forbidden due to the
annihilation asymmetry, Eqs.~6! and~7!# and diffusion ofA
andB leads to a kind of two-component, coupled branchi
and annihilating random walk. The phase diagram and
nature of the transitions will be reported and discussed in
following.

III. PHASE DIAGRAM OF THE NEKIMA MODEL

A. The line of DP transitions

1. Simulation results

Given three independent parametersd, p1 , and pex ~or
ratherpex /G) with the restriction, Eq.~9!, it is hard to ex-
plore the whole phase diagram. In the original~spin-
symmetric! case of NEKIM @6#, we have investigated the
phase boundary in the parameter space (d,pex). For negative
values ofd a line of PC transitions was found. We are n
going to investigate thed,0 case in the following and only
make the remark that spin asymmetry as introduced ab
~with a trivial generalization ford,0), changes the parity
conserving character of the transitions to directed percola
type ~of two species!, as could be expected. The cased>0
~including the Glauber caseG51,d50) was found to be
Ising-like, for all values ofpex .

Introducing spin asymmetry, however, makes the Glau
case also richer in phases. The phase diagram in the plan
parameterspex andp1,1/2 as obtained by computer simu
lations is shown in Fig. 1.

In fixing the phase boundary the quantity measured w
the density of kinksr(t) as a function of time starting from
a random initial distribution of up and down spins. The cha
size L varied betweenL52000–5000 and up tot553105

Monte Carlo steps~MCS! were reached. The way of upda
ing was as in Ref.@6#. A line of DP transitions has bee
found by the power-law behavior ofr(t);t2a with a
50.16060.005, the value characteristic of DP transitio
This was, of course, the expected kind of order-disorder tr
sition on the basis of spin asymmetry.
7-2
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The point p151/2, pex50 is a particular one, at this
point our model goes over to the one investigated by Maju
daret al. @16#. For these parameter values a very high pre
sion computer measurement has given the resultr(t)
5t21/2/ ln(t/t) supporting an analytic independent interv
approximation by these authors. In an equivalent mo
however, the deviation from thet21/2 law has shown up as a
initial density-dependent power function with a power
r(t) slightly deviating from 1/2@22#. This problem, how-
ever, is not the subject of the present investigation.

Concerning the phase diagram, Fig. 1, the parameter
ues in the vicinity ofp151/2 for pex5” 0 are hard from the
computational point of view as long transients show up
the time evolution. It is apparent, however, that the ph
line ends up here tangentially. Atp151/2 the effect of the
exchange term is such that for allpex.0 the absorbing phas
is entered: due to the choice in Eqs.~6! and ~7!, the all si
521 phase~one of the absorbing phases! is reached expo-
nentially fast.

As to the other limiting situationp150, for pex50 the
initial spin distribution freezes in. As a matter of fact, the li
of phase transitions reaches thep150 axis only by letting
pex /G→` by G→0 @G is only fixing the rate of flips, see
Eq. ~3!, while here we fixed it to unity#. This circumstance
however, is of no importance for the results.

2. Cluster-mean-field calculations for the phase diagram

Cluster-mean-field approximation introduced for noneq
librium models by Refs.@23,24# was applied for the presen
model. TheN51 mean-field equation for spin-up density

]r1

]t
522p1~12r1!r1

2 , ~10!

which independently frompex gives ar1}t21 leading order
decay to ther1(`)50 solution for allp1.50, while it is

FIG. 1. Phase diagram of the NEKIMA model ford50, G
51. The absorbing~fully 2) phase lies above the boundary. Th
p150.5 point is referred to as the MDG point in the text.
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constant~keeps the initial value! for p150. Therefore, this
predicts a discontinuous transition along thep150 axis. The
corresponding steady state exponent isb50. Similarly the
kink density,r1(12r1), decays with a leading order singu
larity rkink}t21 and exhibits a jump at thepin50 axis.

The N52 pair approximation results in the followin
steady state solution for kinks:

rkink~`!5
4pex~122p1!p1

112~4pex21!p118pex~2pex21!p1
2

.

~11!

This has absorbing states (rkink50) along thep150, pex

50, andp151/2 lines and active in the 0,p1,1/2, pex

.0 region. The transitions, however, are continuous w
leading order singularityb51 everywhere. As we can se
the simple mean-field and higher order cluster-mean-field
proximations give different singular behavior similarly
cases treated earlier@25,26,28,29#.

For higher order approximationsN.2, we could only
solve the equations for the steady state numerically.
could determine stable solutions up to theN56 level from
the coupled nonlinear equations of 36 variables. By locat
the phase transition lines we found that thep150 and the
pex50 transitions do not change but thep151/2 ~DP! tran-
sition line shifts monotonically towards thep150 axis as
we increase the level of approximations~see Fig. 2!. These
solutions converge towards the phase transition line de
mined by simulations. We found that fairly good quadra
fitting can be applied for theN53,4,5,6 levelp1* (pex ,N)
critical point solutions, so we extrapolated toN→` at pex

50.1, 0.3, 0.5, 0.7, and 0.9. The correspondingp1* (pex ,`)
curve agrees well with the simulation data~see Table I!.

FIG. 2. Phase diagram determined byN52 –6 cluster-mean-
field approximations~filled symbols from right to left!, the N→`
extrapolated values~plus signs! and simulation results~stars!.
7-3
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B. The line of N-BARW2 transitions

As we have seen in the preceding section, in the plan
(p1 ,pex) the phase below the phase transition line is
active one and extends down to thepex50 axis. The critical
behavior at and in the neighborhood of this axis has tur
out to be ofN-BARW2 type. In this respect the absorbin
states are fully ordered or consist of single2 spins perform-
ing random walk in the sea of1 spins.

The order parameter also in this case is the density
kinks r, the steady state value of it disappears when
proaching thepex50 axis asr`}pex

b . Simulations from ran-
dom initial state in a system with sizeL5105 were run up to
106 MCS. In the supercritical region the steady states h
been determined for differentpex values. Following level-
off, the densities were averaged over 104 MCS and 1000
samples. By looking at the effective exponent defined as

be f f@pex~ i !#5
ln r`@pex~ i !#2 ln r`@pex~ i 21!#

ln pex~ i !2 ln pex~ i 21!
, ~12!

one can read off:be f f→b. The result of computer simula
tions atp150.1 is shown in Fig. 3. A linear extrapolation fo
pex,0.1 givesb51.06.01. The overshooting ofbe f f near
the critical point is typical in case of logarithmic correctio
to scaling. By plottingr` /pex as the function of ln(pex) fairly
good linear behavior could be observed in the 0.02,pex
,0.4 region.

FIG. 3. Effective critical exponent of the order parameter at
pex50 transition.

TABLE I. Summary of p1* critical point results ofN5326
GMF ~generalized mean-field! approximations and simulations.

pex N53 N54 N55 N56 N→` MC

0.1 0.419 0.4003 0.3903 0.384 0.357 0.40
0.3 0.3357 0.2963 0.2772 0.2661 0.233 0.27
0.5 0.3000 0.2479 0.2242 0.2111 0.178 0.18
0.7 0.2824 0.2216 0.1945 0.1798 0.146 0.13
0.9 0.2726 0.2057 0.1759 0.1597 0.122 0.10
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The r(t) simulation results atpex50 and p150.1,0.4
were analyzed by the local slopes

ae f f~ t !5
2 ln@r~ t !/r~ t/m!#

ln~m!
~13!

~wherem58 is used! ~Table II!. The asymptotic time evolu-
tion of the density of kinksr(t);t2a has proven to be,
within error, that of annihilating random walk:a51/2 as
shown in Fig. 4. A;t20.9 correction to scaling gave best fi
in both cases. We also tried to fit a logarithmic correcti
form $@a1b ln(t)#/t%0.5 for r(t) but b was found to go zero
for t.;63105 MCS in both cases.

As to the remaining critical exponents when approach
pex50, we checked the expectedN-BARW2 behavior by
measuring the kink density in the active state~steady state!
for several small values ofpex ~between 0.1 and 0.001) fo
lattice sizeL between 50 and 5000. The initial state w
prepared in such a way that a cluster of ‘‘2 ’’ spins was
chosen of width and location randomly distributed betwe
L/4 and 3L/4. Finite size scaling theory@30# predicts the
form

r~pex ,L !5L2b/n'F~pexL
1/n'!. ~14!

e

FIG. 4. Effective critical exponent of the kink density at th
pex50, p150.1 ~lower curve! and p150.4 ~upper curve! as the
function 1/t0.4. This choice results in a linear plot of the loca
slopes, corresponding to;t20.9 correction to scaling.

TABLE II. Summary of critical exponent estimates at thepex

50 line. The last row shows the data of the 1DN-BARW2 class.

p1 b a n'

0.1 1.00~1! 0.505~5! 1.00~6!

0.4 0.503~5!

N-BARW2 1 1/2 1
7-4
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Using the value ofb as obtained above, we determinen' by
data collapsing. Withb/n'51 in Fig. 5, we getn'51.00
6.06. Thus our result shows the critical exponent values
Cardy and Ta¨uber @4#.

IV. SUMMARY

In this paper, a model has been presented by generali
the nonequilibrium kinetic Ising model for the case wh
two kinds of spin anisotropies are present. In addition to
local kinetic bias introduced by Majumdaret al. @16# first, by
prescribing with probability equal to zero the annihilation
2 spins in the neighborhood ‘‘121,’’ we introduce spin
anisotropy in the spin-flip rate. Namely, the ‘‘1’’ spins are
less likely to flip at domain boundaries~with probabilityp1)
than ‘‘2 ’’ spins ~probability 1/2). Branching of kinks~do-
main boundaries! is the main effect of the spin-exchange pa
of the model. We have shown by cluster-mean-field calcu
tions and computer simulations that for a givenp1,1/2

FIG. 5. Data collapse ofrLb/n' againstpexL
1/n' with b/n'

51 for various values of the chain lengths~circle,L550; diamond,
L5100; plus sign,L5600; triangle, L5800; triangle left, L
51000; star,L52000; triangle right,L53000; triangle down,L
54000) on a double logarithmic scale.
-

i-
,
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asymmetry the presence of spin exchange gives rise to
different types of phase transitions. While atpex* 50 an ac-
tive phase emerges with aN-BARW2 type of transition, for
pex* .0 this transforms back into an absorbing state with
DP class transition. The spin anisotropies result in a new t
of two-component, coupled branching and annihilating ra
dom walk of kinks with parity conservation.

At p151/2 the MDG point is reached, see Fig. 1. It is th
end point of the DP transition line similarly to the compa
directed percolation end point of the DP transition line in t
Domany-Kinzel cellular automaton model@31#. The absorb-
ing phase is the same in the two models, the active ph
however, is different.

The question arises whether the 1/ln(t) factor in the
asymptotic behavior found in Ref.@16# is to be expected to
hold even in the present model forpex50. If this were the
case, theN-BARW2 behavior would also be affected. Firs
from the side of simulations, we have not found any sign
such behavior. Moreover, the physical picture behind the
pected asymptotic behavior of spins is also different in
two cases. While MDG argue that at late time the proce
212→2 with probability unity leads to ‘‘1 ’’ domains
sandwiched between much larger ‘‘2 ’’ ones the introduction
of the local asymmetric spin-flip magnetic field with bias f
‘’ 1 ’’ spins will act against and feed up the ‘‘1 ’’ phase to
compensate for their biased annihilation via the MDG p
cess. As a consequence there is no reason to expect a
time logarithmic relaxation of the kink density on thepex
50 line for p1,1/2.

Finally, it is worth noticing that while the PC transition i
known to be sensitive to theZ2 symmetry@14,27# and DP
transition appears by destroying it, theN-BARW2 transition
seems to be insensitive to this symmetry breaking.
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