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One-dimensional nonequilibrium kinetic Ising models with local spin symmetry breaking:
N-component branching annihilating random-walk transition at zero branching rate
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The effects of locally broken spin symmetry are investigated in one-dimensional nonequilibrium kinetic
Ising systems via computer simulations and cluster-mean-field calculations. Besides a line of directed perco-
lation transitions, a line of transitions belonging Mcomponent, two-offspring branching annihilating
random-walk classN-BARW?2) is revealed in the phase diagram at zero branching rate. In this way a spin
model forN-BARW?2 transitions is proposed.
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[. INTRODUCTION pairwise annihilation of the same species and branching
—Aj+2A; with ratep for i =j and with ratep/(N—1) for
The Ising model is a well-known static equilibrium i#]. In case ofp=0 this model is always active except for
model. Its dynamical generalizations, the kinetic Ising mod-the annihilation fixed point at zero branching rate. According
els, were originally intended to study relaxational processetp field theory[4] the coarse-grained, bosonic version of the
near equilibrium statefl,2]. Glauber introduced the single model forms a different universality class, the so-called
spin-flip kinetic Ising model, while Kawasaki constructed aN-BARW2 with exponents in one dimension as follows:
spin-exchange version for studying the case of conserved: =1, z=2, a=1/2, B=1. Here the exponents are
magnetization. Nonequilibrium kinetic Ising models, in defined as follows:
which the steady state is produced by kinetic processes in
connection with heat baths at different temperatures, have E~p Vi~ &, )
been widely investigated and results have shown that various
phase transitions are possible under nonequilibrium condi-
tions, even in one dimensiofdD) (for a review see the ar- p()~t" % pu~pF, @
ticle by Rz in Ref.[3]). Most of these studies, however,

have been concerned with the effects the nonequilibrium naghere is the characteristic time is the correlation length,
ture of the dynamics might exert on phase transitidrigen andp(t), p. are the particle densities at timend in the
by temperature steady state, respectively.

A different line of investigating nonequilibrium phase  Hard core interactions have proven to be relevant in case
transitions has been via branching annihilating random wallpf the N-BARW2 model by drastically changing the univer-
(BARW) processes. The parity conservation of particles issality class[17,18. The arrangement of the offsprings rela-
decisive in determining the universality class of the phaseive to the parent turns out to be a relevant factor and causes
transition. A coherent picture of this scenario is providedtwo robust classes that are insensitive to the parity conserva-
from a renormalization point of view in Ref4]. The first  tion [19] or to the binary nature of the production process
example of a BARW model with an even number of off- [20].
springs exhibiting the so-called P@arity conservingtran- In this paper, we present an asymmetric spin model,
sition was reported by Grassbergatral. [5]. NEKIMA, with asymmetry both in the annihilation and spin-

A class of general nonequilibrium kinetic Ising models flip rate as a generalization of NEKIM. On the level of kinks,
(NEKIM) with combined spin-flip dynamics af=0 and however, this model corresponds to a proces®aind B
Kawasaki spin-exchange dynamics et has been pro- particles withA—ABA- and B—BAB-type branching and
posed by one of the authof§] in which, for a range of AB—O0 annihilation andBA— BA exclusion. Nevertheless,
parameters of the model, PC-type transition takes place. Thizs will be presented below using computer simulations, the
model has turned out to be very rich in several respects, fotritical properties near the zero branching limit are the same
a review see Ref.7]. as for theN-BARW2 model cited above with no sign of

Absorbing transitions have been, however, mostly studie@xclusion effects since alternating sequenced’sfandB’s
in particle-type models. ThH-BARW?2 model is a classical occur like in Ref.[21], hence hard core interactions cannot
stochastic system dfl types of particles with branching an- play an important role. Moreover, at finite branching rate of
nihilating random walk and two offsprings. Ff=1 the the kinks a line of directed percolatidP) -type transition
model exhibits, at finite branching rape PC-type transition [15] occurs, which is well described By=6 level cluster-
[8—14]. ForN>1, N types of particle\; perform diffusion, mean-field calculations.
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Il. THE MODEL in order to balance the effect of the other dynamically in-
duced field arising from Eq$6) and(7) by locally favoring
+ spins. The spin-exchange part of the model remains as in
the spin-symmetric casd).
r In the terminology of domain walls or particles, the fol-
W(S;,Si—1,Sj+1)= §(1+ 0Si—1Si+1) lowing reaction-diffusion picture arises. There are two kinds
of domain walls:— +=A and + — =B, which can only oc-
1 cur alternately because of the spin background. Upon meet-
X|1— Esi(si,lJrsHl) (3 ing AB—0 while in the opposite sequen8&, the two do-
main walls are repulsive due to E().
at zero temperature. Usually the Glauber model is under- The absorbing states in the extreme situapgr=0 when
stood as the special cage-0, I'=1. spin flipping maximally favors+ spins, are states with
The Kawasaki spin-exchange transition rate of neighborSingle frozen— spins such ast —+++—++—+++.

ing spins[2] at T== reduces to an unconditional nearestBY increasingp. , a slow random walk of these lonely
neighbor exchange: spins starts and by annihilating random walk only one of

them survives and performs RW. The alland all — states

The general form of the Glauber spin-flip transition rate in
one dimension for spis; sitting at sitei is [1] (s;==*=1):

Pex are, of course, also absorbing.
Wex(Si»Si+1) = 7(1—5151+1), (4) The inclusion of nearest neighbor spin exchange
changes the picture drastically. Spin exchange leada to
wherep,, is the probability of spin exchange. The quantities—ABA- andB— BAB-type kink production, which together
in Egs.(3) and(4) conserve spin symmetry, of course. Con-with AB—0 annihilation[BA— 0 is forbidden due to the
cerning spin exchanges, which act only at domain boundannihilation asymmetry, Eq$6) and(7)] and diffusion ofA
aries, the process of main importance here is that a kink cadndB leads to a kind of two-component, coupled branching
produce two offsprings at the next time step with probabilityand annihilating random walk. The phase diagram and the
nature of the transitions will be reported and discussed in the
Pk—3k* Pex- (5)  following.

By changingp., for negative values of this model displays

o . . . . . I1l. PHASE DIAGRAM OF THE NEKIMA MODEL
phase transitions in the parity conserving universality class

[6]. A. The line of DP transitions
In the following, we will be interested in investigating an ) _
extended version of the above model. Instead of Bpwe 1. Simulation results
will prescribe the rates for the case=1, =0 as follows. Given three independent parameté;sp, , and pe, (Or
The + ++—+++ and — — ————— processes remain ratherp,,/I") with the restriction, Eq(9), it is hard to ex-

as in Eq.(3) i.e., at zero temperature no kink-pair creationsplore the whole phase diagram. In the origin@pin-
occur inside of domains. Further rates will be chosen in suckymmetrig case of NEKIM[6], we have investigated the

a way that they break the symmetry of and — spins lo-  phase boundary in the parameter spag@J{,). For negative
cally. Such dynamically self-induced field was first investi- yvalues ofé a line of PC transitions was found. We are not
gated in a different context by Majumdar, Dean, and Grassgoing to investigate thé<0 case in the following and only
berger(MDG) [16], namely, in studying th&=0 coarsening make the remark that spin asymmetry as introduced above
dynamics of an Ising chain in a local field, which favers  (with a trivial generalization ford<0), changes the parity

spins as compared t6 ones dynamically. _ conserving character of the transitions to directed percolation
In addition to the choice in Refl16] concerning the type (of two specie} as could be expected. The cas$e0
asymmetry in the annihilation rate (including the Glauber cas=1,6=0) was found to be

Ising-like, for all values ofpgy.

Introducing spin asymmetry, however, makes the Glauber
case also richer in phases. The phase diagram in the plane of
parameterp., andp, <1/2 as obtained by computer simu-

further spin symmetry breaking will be introduced here lations is shown in Fig. 1.
P ymmetry 9 L ' In fixing the phase boundary the quantity measured was
namely, in the spin-flip part of the Glauber transition rate the , : . . .
. . the density of kinks(t) as a function of time starting from
strength of which will be measured by a further parameter dom initial distributi f dd . The cha
While the transition rate a random initial distribution of up and down spins. The chain
P size L varied betweerl. =2000-5000 and up to=5x 10°
W(—:4—)=w(—:—+)=1/2 (8) Monte Carlo stepsMCS) were reached. The way of updat-
ing was as in Ref[6]. A line of DP transitions has been
is unchanged, the two rates flippirg spins will be reduced found by the power-law behavior op(t)~t"* with a
as =0.160+0.005, the value characteristic of DP transition.
This was, of course, the expected kind of order-disorder tran-

W(+;+—)=w(+;—+)=p,<1/2 9 sition on the basis of spin asymmetry.

w(—;++)=0, (7)
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FIG. 1. Phase diagram of the NEKIMA model fé=0, T FIG. 2. Phase diagram determined bly=2-6 cluster-mean-
=1. The absorbindfully —) phase lies above the boundary. The field approximationgfilled symbols from right to left the N—
p.=0.5 point is referred to as the MDG point in the text. extrapolated valuegplus sign$ and simulation resultéstars.

The pointp+|=1/2, Pex=0 ;S a particular one, at this qngtantkeeps the initial valuefor p, =0. Therefore, this
point our model goes over to the one investigated by Ma]”mbredicts a discontinuous transition along the=0 axis. The

daret al.[16]. For these parameter values a very high preci- : ; -
sion computer measurement has given the regil) corresponding steady state exponenBis0. Similarly the

=t"Y?In(t/7) supporting an analytic independent interval kink density,py(1-p), decays with a leading order singu-

. . 71 . . . . — .
approximation by these authors. In an equivalent modell,arlty Prink*L a_nd eXh'bl_ts ajump at thp'.” 0 axis. .
however, the deviation from the 2 law has shown up as an The N=2 pair approximation results in the following

initial density-dependent power function with a power of Stéady state solution for kinks:
p(t) slightly deviating from 1/2[22]. This problem, how-
ever, is not the subject of the present investigation.

Concerning the phase diagram, Fig. 1, the parameter val- o ()= Ape(1—2p,)ps
ues in the vicinity ofp,. =1/2 for pe,# 0 are hard from the UL _ 102
computational point of view as long transients show up in 1%2(4Pex 1P+ +8Pex( 2Pex— 1)P% (11)
the time evolution. It is apparent, however, that the phase
line ends up here tangentially. At, =1/2 the effect of the
exchange term is such that for all,>0 the absorbing phase
is entered: due to the choice in Eq§) and (7), the alls;
= —1 phasegone of the absorbing phagds reached expo-
nentially fast.

As to the other limiting situatiorp, =0, for p.,=0 the
initial spin distribution freezes in. As a matter of fact, the line
of phase transitions reaches the=0 axis only by letting
Pex/T'— by I'—=0 [T is only fixing the rate of flips, see
Eq. (3), while here we fixed it to unitly This circumstance,
however, is of no importance for the results.

This has absorbing statep,{,,=0) along thep+ =0, pex
=0, andp,=1/2 lines and active in the<Qp, <1/2, pey
>0 region. The transitions, however, are continuous with
leading order singularity3=1 everywhere. As we can see
the simple mean-field and higher order cluster-mean-field ap-
proximations give different singular behavior similarly to
cases treated earli€?5,26,28,29

For higher order approximationd>2, we could only
solve the equations for the steady state numerically. We
could determine stable solutions up to tNe=6 level from
the coupled nonlinear equations of 36 variables. By locating
the phase transition lines we found that fne=0 and the

Cluster-mean-field approximation introduced for nonequi—pexzo transitions do not change but the = 1/2 (DP) tran-
librium models by Refs[23,24 was applied for the present sition line shifts monotonically towards the, =0 axis as
model. TheN=1 mean-field equation for spin-up density is e increase the level of approximatiofsee Fig. 2 These
solutions converge towards the phase transition line deter-
mined by simulations. We found that fairly good quadratic
fitting can be applied for thé\=3,4,5,6 levelp* (pex,N)
critical point solutions, so we extrapolated kb—o at pey
which independently fronp,, gives ap,>=t~! leading order =0.1, 0.3, 0.5, 0.7, and 0.9. The correspondiidpe,,>)
decay to thep;(°) =0 solution for allp,>=0, while itis  curve agrees well with the simulation ddtee Table)l

2. Cluster-mean-field calculations for the phase diagram

ap
—e=2p.(1-p1)pi, (10
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TABLE |I. Summary of p% critical point results ofN=3—-6 TABLE 1l. Summary of critical exponent estimates at thg,
GMF (generalized mean-fieldapproximations and simulations. =0 line. The last row shows the data of the N9SBARW2 class.
Pex N=3 N=4 N=5 N=6 N—ox MC P+ B a v,

0.1 0.419  0.4003 0.3903 0.384 0.357 0.405 0.1 1.0Q@1) 0.5055) 1.006)
0.3 0.3357 0.2963 0.2772 0.2661 0.233 0.272 0.4 0.5035)
0.5 0.3000 0.2479 0.2242 0.2111 0.178 0.187 N-BARW2 1 1/2 1

0.7 0.2824 0.2216 0.1945 0.1798 0.146  0.137
0.9 0.2726  0.2057 0.1759 0.1597 0.122 0.107

The p(t) simulation results ap.,=0 andp,=0.1,0.4

B. The line of N-BARW?2 transitions were analyzed by the local slopes
As we have seen in the preceding section, in the plane of
(P4 ,Pex) the phase below the phase transition line is the B —In[p(t)/p(t/m)]
active one and extends down to thg=0 axis. The critical aeti(t) = In(m) (13

behavior at and in the neighborhood of this axis has turned

out to be ofN-BARW?2 type. In this respect the absorbing

states are fully ordered or consist of singtespins perform-  (wherem=8 is used (Table Il). The asymptotic time evolu-

ing random walk in the sea of spins. tion of the density of kinksp(t)~t~“ has proven to be,
The order parameter also in this case is the density ofithin error, that of annihilating random walke=1/2 as

kinks p, the steady state value of it disappears when apshown in Fig. 4. A~t~%° correction to scaling gave best fit

proaching the,,=0 axis asowocpgx. Simulations from ran- in both cases. We also tried to fit a logarithmic correction

dom initial state in a system with size=10° were run up to  form {[a-+b In(t)/t}>° for p(t) but b was found to go zero

10° MCS. In the supercritical region the steady states havéor t>~6x10° MCS in both cases.

been determined for differer,, values. Following level- As to the remaining critical exponents when approaching

off, the densities were averaged over*ICS and 1000 p.,=0, we checked the expected-BARW2 behavior by

samples. By looking at the effective exponent defined as measuring the kink density in the active stétéeady state

for several small values gf., (between 0.1 and 0.001) for

lattice sizeL between 50 and 5000. The initial state was

prepared in such a way that a cluster of* spins was

chosen of width and location randomly distributed between

one can read offB.— 8. The result of computer simula- | /4 and 3./4. Finite size scaling theor30] predicts the
tions atp,. =0.1 is shown in Fig. 3. A linear extrapolation for fgrm

Pex<0.1 givesB=1.0=.01. The overshooting 0B.s; near
the critical point is typical in case of logarithmic corrections

IN o[ Pex(i)]1= 1N poo[ Pex(i—1
Berlpol)] - TP BRI )

to scaling. By plotting.../pex as the function of Irfe,) fairly p(Pex, L) =L PI"LF(pg, L"), (14)
good linear behavior could be observed in the &:@2,
< 0.4 region. 0.35 , , :
16 T T T T
0.4 | 1
1.4 | .
1.2 % oF 045
=i
1t % § -
E 0.5 | .
0.8 -
055 0 0 61 oég 0 63 0.04
0-6 1 1 1 1 1/t '
0 0.1 0.2 0.3 0.4 0.5
Pey FIG. 4. Effective critical exponent of the kink density at the

Pex=0, p,=0.1 (lower curve and p, =0.4 (upper curvg as the
FIG. 3. Effective critical exponent of the order parameter at thefunction 1t%* This choice results in a linear plot of the local
Pex=0 transition. slopes, corresponding tet~°° correction to scaling.
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FIG. 5. Data collapse opL?'"+ againstpe,L*”s with /v,

=1 for various values of the chain lengttwircle, L =50; diamond,

L=100; plus sign,L=600; triangle, L=800; triangle left, L
=1000; star,L=2000; triangle rightL =3000; triangle downL

=4000) on a double logarithmic scale.

Using the value of3 as obtained above, we determing by
data collapsing. With3/v, =1 in Fig. 5, we getr, =1.00

+.06. Thus our result shows the critical exponent values b

Cardy and Taber[4].

IV. SUMMARY
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asymmetry the presence of spin exchange gives rise to two
different types of phase transitions. While @}, =0 an ac-

tive phase emerges with-BARW?2 type of transition, for
ps,>0 this transforms back into an absorbing state with a
DP class transition. The spin anisotropies result in a new type
of two-component, coupled branching and annihilating ran-
dom walk of kinks with parity conservation.

At p, =1/2 the MDG point is reached, see Fig. 1. Itis the
end point of the DP transition line similarly to the compact
directed percolation end point of the DP transition line in the
Domany-Kinzel cellular automaton modeé1]. The absorb-
ing phase is the same in the two models, the active phase,
however, is different.

The question arises whether the 1f)n{actor in the
asymptotic behavior found in Ref16] is to be expected to
hold even in the present model fpg,=0. If this were the
case, theN-BARW?2 behavior would also be affected. First,
from the side of simulations, we have not found any sign of
such behavior. Moreover, the physical picture behind the ex-
pected asymptotic behavior of spins is also different in the
two cases. While MDG argue that at late time the process
—+——— with probability unity leads to %" domains
sandwiched between much larger “ ones the introduction
of the local asymmetric spin-flip magnetic field with bias for
“ +" spins will act against and feed up the+” phase to
compensate for their biased annihilation via the MDG pro-
cess. As a consequence there is no reason to expect a late

Xime logarithmic relaxation of the kink density on tipe,

=0 line forp . <1/2.
Finally, it is worth noticing that while the PC transition is
known to be sensitive to th&, symmetry[14,27] and DP

In this paper, a model has been presented by generalizifg2nSition appears by destroying it, tNeBARW2 transition

the nonequilibrium kinetic Ising model for the case whe

nSeems to be insensitive to this symmetry breaking.

two kinds of spin anisotropies are present. In addition to the
local kinetic bias introduced by Majumdat al.[16] first, by

prescribing with probability equal to zero the annihilation of
— spins in the neighborhood+ — +,” we introduce spin
anisotropy in the spin-flip rate. Namely, the-" spins are

less likely to flip at domain boundariéwith probabilityp, )
than “—" spins (probability 1/2). Branching of kinkgdo-
main boundariesis the main effect of the spin-exchange part99) and from the IKTA project(Project No. 00111/2000

of the model. We have shown by cluster-mean-field calculaThe simulations were performed on the parallel cluster of
tions and computer simulations that for a givpn<1/2
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